Mineral prospectivity and $^{40}\text{Ar}/^{39}\text{Ar}$ thermochronology of Proterozoic mobile belts: an example from the Gawler Craton

Anthony Reid

Geological Survey of South Australia
UNCOVER Themes

4D Geodynamics and Metallogeny

Lithospheric Architecture

Activities in AMIRA Roadmap:

• Detect exposure levels of mineral systems
• Vector to *upper levels* of mineral systems
• Activity of large fault zones: lithospheric architecture

Role for thermochronology in mineral systems evaluation
K-bearing minerals

Step heating analysis of irradiated mineral separates

Laser or furnace technique

Closure temperature ranges: ± 50 °C

- Hornblende ~550 °C
- Muscovite ~350 °C
- Biotite ~300 °C
- *K-feldspar* >300 - 150 °C
- Sericite ~200 °C

For details see McDougall and Harrison (1999), Snee (2002)
Thermochronology – a record of thermal history

e.g. c. 1670 Ma Sybella Batholith, Mt Isa

Sprinks et al., 2002. *Tectonophysics*, v349
Dating mineralisation

e.g. Buffalo Hump district, Idaho

- Country rocks had cooled to <280 °C by 78.2 Ma

- Implies the muscovite ages are very close to formation age

- Heat associated with intrusion & mineralisation rapidly dissipated

Interpretation requires knowledge of regional thermal evolution

\[{^{40} \text{Ar}}/{^{39} \text{Ar}} \text{ thermochronology} \]

Lund et al. 1986, Economic Geology, v81, 990-996.
$^{40}\text{Ar}/^{39}\text{Ar}$ thermochronology

Thermochronology – a record of thermal history

Closure temperature as a broad proxy for depth
Closure temperature, proxy for depth

Central Gneiss Belt, Grenville Province
(Cosca et al. 1991)

- Initial cooling from gt-opx composition 15 bars/°C; project this rate through ‘realistic’ geotherm: 30 °C/km
- Cooling rate: 2 – 4 °C/myr
- Isotherm relaxation, erosion driven cooling

40Ar/39Ar thermochronology

Peak P-T ~1160 Ma

Temperature (°C)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Age Range (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-feldspar</td>
<td>870–700</td>
</tr>
<tr>
<td>Biotite</td>
<td>950–840</td>
</tr>
<tr>
<td>Muscovite</td>
<td>950–870</td>
</tr>
<tr>
<td>Hornblende</td>
<td>1025–930</td>
</tr>
</tbody>
</table>
Closure temperature, proxy for depth

Northern Gawler Craton (Forbes et al. 2012)
 • Higher T geotherm, possibly indicates depth

Limitation: no ‘universal geotherm’
Mineral system

- Crustal level – *style of deposit*
- Erosion depth – *preservation*

Image adapted from Graham Begg, 2015, cited in AMIRA P1162 Report, Unlocking Australia’s hidden potential. An Industry Roadmap – Stage 1
Iron oxide-copper-gold mineral systems

- Fe-rich hydrothermal systems related to igneous intrusions
- 1590 Ma metallogenic event

Key ingredients:
1. Regional magnetite- and hematite-rich alteration
2. Tholeiitic basalts
3. Movement of trans-lithospheric shear zones
4. Preserved subvolcanic depths (preferably <5 km)
5. Oxidised upper crustal packages

(Hayward & Skirrow, 2010)
Iron oxide-copper-gold mineral systems

• Fe-rich hydrothermal systems related to igneous intrusions
• 1590 Ma metallogenic event

Key ingredients:
1. Regional magnetite- and hematite-rich alteration
2. Tholeiitic basalts
3. Movement of trans-lithospheric shear zones
4. Preserved subvolcanic depths (preferably <5 km)
5. Oxidised upper crustal packages

(Hayward & Skirrow, 2010)
Gawler Craton
Age (Ma)
Reworking
c. 1450 Ma

Large igneous province
& mineralisation
1600 – 1575 Ma

Tectono-metamorphic event; “orogeny”
1730 – 1690 Ma

Cover
1900 – 1730 Ma

Basement
3150 – 2000 Ma
$^{40}\text{Ar}/^{39}\text{Ar}$ data

Gawler Craton
- 117 data points

Data sources for this and subsequent figures:
- Foster and Ehlers, 1998
- Forbes et al., 2012
- Tomkins et al. 2004
- Fraser and Lyons 2006
- Skirrow et al. 2007
- Fraser et al. 2007
- Fraser et al. 2012
- Reid and Jourdan, unpub.data
40Ar/39Ar data

Gawler Craton

- 117 data points

Data sources for this and subsequent figures:
- Foster and Ehlers, 1998
- Forbes et al., 2012
- Tomkins et al. 2004
- Fraser and Lyons 2006
- Skirrow et al. 2007
- Fraser et al. 2007
- Fraser et al. 2012
- Reid and Jourdan, unpub.data
Neoarchean basement
Mesoproterozoic volcanics & intrusives
Paleoproterozoic cover sequences
Prominent Hill
Olympic Dam
Carrapateena

Paleoproterozoic cover sequences
Biotite and sericite 40Ar/39Ar data

Old ages in Neoarchean basement

Prominent Hill

Carrapateena

Olympic Dam
Biotite and sericite $^{40}\text{Ar}/^{39}\text{Ar}$ data

Drill hole SH 7

Prominent Hill

Olympic Dam

Carrapateena
SH 7: new $^{40}\text{Ar}/^{39}\text{Ar}$ results

- **Muscovite**: ~2000 Ma
- **Biotite**: ~2000 Ma
- **K-feldspar**: ~1800 Ma
- **Sericite**: ~1590 Ma

Reid, Jourdan and Jagodzinski, *in review*
SH 7: new $^{40}\text{Ar}/^{39}\text{Ar}$ results

Emplacement ~2535 Ma

Gawler Craton IOCG mineralisation “window”

Temperature ($^\circ$C)

Age (Ma)
Post-emplacement cooling ages in Hiltaba Suite granites
Biotite \(\approx 1580 \text{ Ma} \)
Sericite alteration in gold deposit:
1582 ± 8 Ma
Fraser et al. 2007, sample 2003369004
Deformed granite, Coorabie Shear Zone, Fraser and Lyons, 2006; Biotite age, 1452 Ma
- 1580 Ma metamorphism adjacent shear zone
- Near isobaric cooling

Halpin, Reid, Jagodzinski unpub data
Biotite Age (Ma)
- 1250 - 1350
- 1420 - 1490
- 1490 - 1570
- 1570 - 1600
- 1600 - 1730
- 1730 - 2155

Sericite Age (Ma)
- 1420 - 1450
- 1490 - 1570
- 1570 - 1600
- 1560 - 1595

Hornblende Age (Ma)
- 1500 Ma

Fowler Domain
Nuyts Domain

Reid and Jourdan, unpubdata
Variable cooling rates:
~3 °C/Myr then ~6 °C/Myr
Increased rate – phase of exhumation at ~1500 Ma

How do these cooling histories compare with other orogens?
Cooling rates and exhumation

- Bodorkos and Reddy, 2004; Cosca et al., 1991; Dahl et al., 2004; Flowers et al., 2006; Forbes et al., 2012; Fraser et al., 2012; Kamber et al., 2002; Mahan et al., 2011; Mezger et al., 1990; Rivers, 2012; Schneider et al., 2007; Sciborski et al., 2015; Tomkins et al., 2004; Willigers et al., 2002;

Neoarchean basement, northern Gawler Craton
Cooling rates and exhumation

- Upper crust at 1590 Ma, during the metallogenic event
Cooling rates and exhumation

Slow – <4 °C/Myr – Erosion controlled exhumation, e.g. Limpopo Belt (Mahan et al., 2011); Superior Province (Mezger et al. 1990)
Cooling rates and exhumation

Western and Northern Gawler Craton
- Moderate cooling rates: ~2 – 6 °C/Myr
Cooling rates and exhumation

Cooling rates:

- **Moderate** – 4 - 10 °C/Myr – Structural control on exhumation & cooling; settings include late orogenic crustal extrusion along major fault zones, e.g. Trans Hudson (Schneider et al., 2007); post-orogenic collapse, e.g. Grenville Province (Rivers, 2012)
- **Fast** – >10 °C/Myr – Active thrusting; e.g. Albany Fraser Orogen (Scibiorski et al. 2015)
- Phanerozoic orogens typically show even faster cooling
Cooling rates and exhumation

- Archean – slow, erosion dominated cooling
- Proterozoic – faster cooling; tectonic control
- Reflects secular change in tectonic style and crustal level exposed: deeper levels generally exposed in large Archean orogens
- Mixed levels exposed in Proterozoic (and Phanerozoic) consequently faster cooling rates are preserved (see also Willigers et al. 2002. *J. Geology*, 110, 503-517)
Cooling rates and exhumation

- Western and Northern Gawler Craton
- Moderate cooling rates: ~4 – 6 °C/Myr
- Post-1590 Ma exhumation; likely active control on cooling
- Mineralisation – either deep crustal at 1590 Ma, or post-1590 Ma upper crustal mineral systems.
Mid crust at 1590 Ma

Active shear zone at ~1450 Ma

Exhumation focused adjacent shear zone in Fowler Domain

Thrust vergence towards craton

- Active shear zone at ~1500 Ma
- Exhumation focused adjacent shear zone in Fowler Domain

Mid crust at 1590 Ma

Upper crust at 1590 Ma

Post 1450 Ma exhumation

Mid crust at 1590 Ma
~1460 Ma exhumation

13GA-EG1 Dutch et al. 2015
Broad crustal level at 1590 Ma

- Upper crust
- Mid-Upper crust
- Lower-Mid crust
- Mid crust
- Differential exhumation

Prominent Hill

Olympic Dam

Carrapateena

Biotite Age (Ma)

- 1250 - 1350
- 1420 - 1490
- 1490 - 1570
- 1570 - 1600
- 1600 - 1730
- 1730 - 2155

Sericite Age (Ma)

- 1420 - 1450
- 1560 - 1595

Kilometers
Lithospheric structure

- Reactivated major structures – potential sites for fluid flow, mineralisation
Lithospheric structure

- Reactivated major structures – potential sites for fluid flow, mineralisation
Lithospheric structure

- Structures expressed in potential field data, magnetotellurics, and thermochronology
- Time-temperature history – compare to regional tectonic evolution
Role for thermochronology in mineral systems evaluation

4D geodynamic evolution
- Crustal level through time
- Erosion depth
 - Inform predictions of likely styles of mineralisation

Lithospheric architecture
- Major fault zones
Regional “crustal level” through time

UNCOVER: An Australia-wide thermal evolution project?

Add in other thermochronology systems:
e.g. U-Pb apatite, AFT (zircon, apatite), aHe, zHe

Gleadow et al. 2002; Tectonophysics v 349
Scopus search – “Argon Australia”
75 papers
- Mostly regional cooling studies & dating mineralization
- Dating deformation

UNCOVER: An Australia-wide thermal evolution project?
References

Gawler Craton thermochronology and geology

Fraser, G., Skirrow, R. G., and Holm, O., 2007, Mesoproterozoic gold prospects in the central Gawler Craton, South Australia: geology, alteration, fluids and timing: Economic Geology, no. 102, p. 1511-1539.

Geophysical data

Regional cooling paths

Disclaimer

The information contained in this presentation has been compiled by the Department of State Development (DSD) and originates from a variety of sources. Although all reasonable care has been taken in the preparation and compilation of the information, it has been provided in good faith for general information only and does not purport to be professional advice. No warranty, express or implied, is given as to the completeness, correctness, accuracy, reliability or currency of the materials.

DSD and the Crown in the right of the State of South Australia does not accept responsibility for and will not be held liable to any recipient of the information for any loss or damage however caused (including negligence) which may be directly or indirectly suffered as a consequence of use of these materials. DSD reserves the right to update, amend or supplement the information from time to time at its discretion.
Contact

Department of State Development
Level 4, 11 Waymouth Street
Adelaide, South Australia 5000
GPO Box 320
Adelaide, South Australia 5001
T: +61 8 8226 3821
E: dsdreception@sa.gov.au

www.statedevelopment.sa.gov.au