South Australian coal potential - CSM, ISG, CTL and CTG

Authors: E M Alexander, A Sawsane and J Davies. PIRSA Petroleum & Geothermal Group Co-Contributors: G Kiekels, Fehr Resources Ltd, Adina Resources Ltd, Syngas Energy Ltd, Exploration Ltd

Introduction

In the late Mesozoic, before the overview of Patagonian-Hercynian intraplate tectonics or arc volcanism in the western Australia continent of the earth. Tectonic activity includes rifting (late Carboniferous), and accretion or collision of modern continents. Geological evolution differentiates the influences of different tectonic regimes. Intrusion of basaltic and andesitic rocks occurred in the late Mesozoic, and the graben-forming activity produced Mesozoic basins. South Australia coalfields may have been formed pre-Cretaceous due to some of the above processes.

TRIASIC

Logan Coal

The Murchison - Lady Findlay Group Coalfield has been mined since 1894. There are two major coalfields, the Murchison and Logan. The Logan Coalfield includes Cretaceous, Oligocene and Lower Eocene deposits. Logan Coalfield (36° 18’ to 36° 31’ S, 135° 47’ to 136° 10’ E) is the more widespread of the two.

North Northern Victoria Basin

Boxer Coal

The coal measures range in thickness from 8.5 - 18.5 in Victoria, are the largest and have been extensively investigated for potential reserves.

Methodology

The methodology involves the use of geological and geophysical data to search for and evaluate potential coal deposits. The integration of these data is used to identify areas that appear to have potential for coal deposits. The results are then used to assist in decision-making regarding further exploration and development of these deposits.

Prospects

Strong prospects exist for the discovery of additional coal deposits in the state of South Australia. The geological and geophysical data collected in this study have provided valuable information that can be used to identify potential areas for further exploration and development. These prospects will be monitored and evaluated as additional data becomes available.

Pace Plan

The pace plan is designed to accelerate exploration and development of the state’s coal resources. It includes a variety of activities such as geological mapping, geophysical surveys, and detailed studies of known coal deposits. The plan also includes a strong focus on data analysis and interpretation, as well as the development of new technologies to enhance exploration capabilities.

Prospects

The pace plan aims to accelerate the discovery and development of new coal deposits in South Australia. It includes a variety of activities to achieve this goal, and is designed to be implemented over a multi-year period. The plan is expected to have a significant impact on the state’s coal industry and contribute to the state’s economic development.

References


www.minerals.pirsa.sa.gov.au

SEDIMENTARY BASINS

SUMMARY

South Australia has significant amounts of very large-scale lignite based on shallow terrestrial basins. Large-scale lignite is typically found in areas with high rainfall and is not usually associated with unconformity or tectonic activity. While large-scale lignite is a concern for some areas, it is generally not a major problem for most. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

OCTOBER

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

September

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

MARCH

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

FACILITIES

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

JANUARY

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.

DECEMBER

Recent discoveries have shown that the potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams. While some areas have the potential for large-scale lignite, it is not a major concern for most areas. The potential for large-scale lignite is largely dependent on the geological setting and the availability of suitable coal seams.